Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Okra (Abelmoschus esculentus Linn) inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells

Nootchanat Mairuae1 , Poonlarp Cheepsunthorn2, Chalisa Louicharoen Cheepsunthorn2, Walaiporn Tongjaroenbuangam1

1Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; 2Faculty of Medicine, Chulalongkorn University, Bangkok 10330.

For correspondence:-  Nootchanat Mairuae   Email: mairuae.n@gmail.com   Tel:+6643712992

Received: 9 January 2017        Accepted: 14 May 2017        Published: 29 June 2017

Citation: Mairuae N, Cheepsunthorn P, Cheepsunthorn CL, Tongjaroenbuangam W. Okra (Abelmoschus esculentus Linn) inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells. Trop J Pharm Res 2017; 16(6):1285-1292 doi: 10.4314/tjpr.v16i6.11

© 2017 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the inhibitory effects of okra (Abelmoschus esculentus Linn.) extract on the production of reactive oxygen species (ROS) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV2 microglia.
Methods: Okra was extracted with ethanol by Soxhlet extraction.  Non-cytotoxic doses of okra at concentrations of 50, 100 and 200 μg/mL were used in this study. BV2 cells were cultured and treated with LPS in the presence or absence of okra at the concentrations indicated above. ROS, nitric oxide (NO), tumor necrotic factor alpha (TNF-α), interleukin 1 beta (IL-1β), phosphorylation levels of nuclear factor-kappa B (NF-kB) p65 and Akt were determined.
Results: Treatment of BV2 cells with okra concentrations of 50, 100 and 200μg/mL significantly suppressed LPS-induced NO as well as ROS compared to untreated cells. There was also a significant decrease in the production of TNF-α and IL-1β in okra-treated BV2 microglia cells. The level of LPS-induced NF-kB p65 phosphorylation was significantly decreased by okra treatment. In addition, okra inhibited LPS-induced Akt phosphorylation, which is an upstream molecule of NF-kB.
Conclusion: Okra exerts anti-oxidative and anti-inflammatory effects in LPS-stimulated BV2 microglial cells by suppressing Akt-mediated NF-κB pathway. This suggests that okra might be a valuable agent for the treatment of anti-neuroinflammatory diseases mediated by microglial cells.

Keywords: Abelmoschus esculentus Linn, Inflammatory cytokines, Lipopolysaccharide, Neuroinflammation, Microglia, Reactive oxygen species

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates